二分法查找(binarySearch)
Copyright ©2024 www.javaclimb.com 版权所有 12/28/2017
# 一、什么是二分法
# 1.概念
二分法,也称为折半法,是一种在有序数组中查找特定元素的搜索算法。
# 2.算法原理
(1)首先,从数组 (opens new window)的中间元素开始搜索,如果该元素正好是目标元素,则搜索过程结束,否则执行下一步。 (2)如果目标元素大于/小于中间元素,则在数组大于/小于中间元素的那一半区域查找,然后重复步骤(1)的操作。 (3)如果某一步数组为空,则表示找不到目标元素。
# 3.算法实现
import java.util.Arrays;
public class BSExist {
public static boolean exist(int[] sortedArr, int num) {
if (sortedArr == null || sortedArr.length == 0) {
return false;
}
int L = 0;
int R = sortedArr.length - 1;
int mid = 0;
// L..R
while (L < R) { // L..R 至少两个数的时候
mid = L + ((R - L) >> 1);
if (sortedArr[mid] == num) {
return true;
} else if (sortedArr[mid] > num) {
R = mid - 1;
} else {
L = mid + 1;
}
}
return sortedArr[L] == num;
}
// for test
public static boolean test(int[] sortedArr, int num) {
for(int cur : sortedArr) {
if(cur == num) {
return true;
}
}
return false;
}
// for test
public static int[] generateRandomArray(int maxSize, int maxValue) {
int[] arr = new int[(int) ((maxSize + 1) * Math.random())];
for (int i = 0; i < arr.length; i++) {
arr[i] = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
}
return arr;
}
public static void main(String[] args) {
int testTime = 500000;
int maxSize = 10;
int maxValue = 100;
boolean succeed = true;
for (int i = 0; i < testTime; i++) {
int[] arr = generateRandomArray(maxSize, maxValue);
Arrays.sort(arr);
int value = (int) ((maxValue + 1) * Math.random()) - (int) (maxValue * Math.random());
if (test(arr, value) != exist(arr, value)) {
succeed = false;
break;
}
}
System.out.println(succeed ? "Nice!" : "Fucking fucked!");
}
}
# 二、二分法算法特点
# 1.时间复杂度
1.最坏情况查找最后一个元素(或者第一个元素)Master定理T(n)=T(n/2)+O(1)所以T(n)=O(log2n) 2.最好情况查找中间元素O(1)查找的元素即为中间元素(奇数长度数列的正中间,偶数长度数列的中间靠左的元素)
# 2.空间复杂度 (opens new window)
空间复杂度为 S(n)=logn
# 3.稳定性
但是,这个算法存在局限性。 比如说给你有序数组 (opens new window) nums = [1,2,2,2,3],target = 2,此算法返回的索引是 2,没错。但是如果我想得到 target 的左侧边界,即索引 1,或者我想得到 target 的右侧边界,即索引 3,这样的话此算法是无法处理的。 这样的需求很常见。你也许会说,找到一个 target 索引,然后向左或向右线性搜索不行吗?可以,但是不好,因为这样难以保证二分查找对数级的时间复杂度 (opens new window)了。